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Abstract

For a left-compressed intersecting family A ⊆ [n](r) and a set X ⊆ [n],
let A(X) = {A ∈ A : A ∩ X 6= ∅}. Borg asked: for which X is |A(X)|
maximised by taking A to be all r-sets containing the element 1? We
determine exactly which X have this property, for n sufficiently large
depending on r.

1 Introduction

Write [n] = {1, 2, . . . , n} and [m,n] = {m,m + 1, . . . , n}. Denote the set of
r-sets from a set S by S(r). A family of sets is a subset of [n](r) for some n and
r. We think of a set A as an increasing sequence of elements a1a2 . . . ar. The
compression order on [n](r) has A ≤ B if and only if ai ≤ bi for 1 ≤ i ≤ r. A
family A is left-compressed if A ∈ A whenever A ≤ B for some B ∈ A. The
corresponding notion of left-compression is described in Section 2.

We call a family intersecting if A ∩B 6= ∅ for all A,B ∈ A. (If n < 2r then
every family is intersecting.) The most basic result about intersecting families is
the Erdős-Ko-Rado Theorem. For any n and r, write S = {A ∈ [n](r) : 1 ∈ A}
for the star at 1.

Theorem 1 (Erdős-Ko-Rado [3]). If n ≥ 2r and A ⊆ [n](r) is intersecting,
then |A| ≤ |S|.

Borg considered a variant problem where we only count members that meet
some fixed set X. For a family A and a non-empty set X, write

A(X) = {A ∈ A : A ∩X 6= ∅}.

Theorem 1 tells us that we can maximise |A(X)| by taking A to consist of all r-
sets containing some fixed element of X. To avoid this trivial case we insist that
A be left-compressed, which rules out stars centred anywhere but 1. The star
at 1 remains the optimal family if 1 ∈ X, so we assume further that X ⊆ [2, n].

Question 2. For which X do we have |A(X)| ≤ |S(X)| for all left-compressed
intersecting families A?

Borg asked this question in [2], giving a complete answer for the case |X| ≥ r
and a partial answer for the case |X| < r. Call X good (for n and r) if for every
left-compressed intersecting family A ⊆ [n](r) we have |A(X)| ≤ |S(X)|.
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Theorem 3 (Borg [2]). Let r ≥ 2, n ≥ 2r and X ⊆ [2, n].

(a) If |X| > r, then X is good.

(b) If X is good and X ≤ X ′, then X ′ is good.

(c) For any k ≤ r, {2k, 2k + 2, . . . , 2r} is good.

(d) If n = 2r and |X| = r, then X is good if and only if {2, 4, . . . , 2r} ≤ X.

(e) If n > 2r, |X| = r and either

(i) r ≥ 4 and X 6= [2, r + 1],

(ii) r = 3 and {2, 3} 6⊆ X, or

(iii) r = 2 and {2, 3} 6= X,

then X is good. Otherwise, X is not good.

It is not true that all X are good. For example, consider the Hilton-Milner
family T = S([2, r + 1]) ∪ {[2, r + 1]} . The family T is left-compressed and for
any X ⊆ [2, r + 1], |T (X)| = |S(X)|+ 1, so X is not good.

Our main result is that, surprisingly, for large n and |X| ≥ 4 this turns out
to be the only obstruction.

Theorem 4. Let r ≥ 3, n ≥ 2r and X ⊆ [2, n] with |X| ≤ r. If X 6⊆ [2, r + 1]
and either

(i) |X| ≥ 4,

(ii) |X| = 3 and {2, 3} 6⊆ X,

(iii) |X| = 2 and 2, 3 6∈ X, or

(iv) |X| = 1,

then, for n sufficiently large, X is good. Otherwise, X is not good.

For r = 2, condition (iii) needs to be replaced by X 6= {2, 3}. The result can
then be checked easily by hand or read out of Theorem 3 in conjunction with
the Hilton-Milner example, so we assume r ≥ 3 for simplicity.

Our proof uses Ahlswede and Khachatrian’s notion of generating sets to
express the sizes of maximal left-compressed intersecting families, and their
restrictions under X, as polynomials in n. It turns out to be sufficient to
consider only leading terms, reducing a question about intersecting families of
r-sets to a question about intersecting families of 2-sets, which have a very
simple structure.

Section 2 sets out the basic properties of compressions and generating sets
that we shall use. Section 3 describes a way of thinking about maximal left-
compressed intersecting families and proves the lemma that allows us to compare
coefficients of polynomials instead of set sizes. Section 4 completes the proof of
Theorem 4. Section 5 discusses possible improvements and generalisations.

2 Compressions and generating sets

In this section we describe the notion of left-compression corresponding to ≤ on
[n](r) and the use of generating sets.
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2.1 Compressions

For a set A, and i < j, the ij-compression of A is

Cij(A) =

{
A− j + i if j ∈ A, i 6∈ A,

A otherwise;

that is, replace j by i if possible. Observe that A ≤ B if and only if A can be
obtained from B by a sequence of ij-compressions.

For a set family A, define

Cij(A) = {Cij(A) : A ∈ A and Cij(A) 6∈ A} ∪ {A : A ∈ A and Cij(A) ∈ A};

that is, compress A if possible. Observe that A is left-compressed if and only if
Cij(A) = A for all i < j. We will use the following basic result.

Lemma 5. If A is intersecting then Cij(A) is intersecting.

Proof. The proof is an easy case check. Details, and a further introduction to
compressions, can be found in Frankl’s survey article [4].

Lemma 5 means that we can always compress an intersecting family to a
left-compressed intersecting family of the same size by repeatedly applying ij-
compressions. We eventually reach a left-compressed family as

∑
A∈A

∑r
i=1 ai

is positive and strictly decreases with each successful compression.

2.2 Generating sets

For any r and n, and a collection G of sets, the family generated by G is

F(r, n,G) = {A ∈ [n](r) : A ⊇ G for some G ∈ G}.

Generating sets were introduced by Ahlswede and Khachatrian [1], and are
useful for the study of intersecting families because they give a restricted number
of sets on which all the intersecting actually happens.

Lemma 6 ([1]). For n ≥ 2r, F(r, n,G) is intersecting if and only if G is.

Proof. If G is intersecting then certainly F(r, n,G) is. Conversely, if G contains
two disjoint sets then (since n ≥ 2r) they can be completed to disjoint r-sets in
F(r, n,G).

If G generates a left-compressed intersecting family then

G′ = {G′ : G′ ≤ G for some G ∈ G}

generates the same family, so we may assume that G is ‘left-compressed’ (over-
looking non-uniformity) and can therefore be described by listing its maximal
elements. It is convenient to take

F(r, n,G) = {A ∈ [n](r) : A ≺ G for some G ∈ G},
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where A ≺ G (‘A is generated by G’) if and only if |G| ≤ |A| and ai ≤ gi for
1 ≤ i ≤ |G|. We can think of ≺ as an extension of ≤ to the non-uniform case,
where ‘missing’ elements are assumed to take the value ∞. Thus

123 ≺ 12 ( = 12∞);

(12∞ = ) 12 6≺ 123.

The following weaker form of Lemma 6 is better suited to our new definition
and is sufficient for our purposes.

Corollary 7. Let n ≥ 2r and G be a collection of subsets of [2s] of size at most
s. If F(s, 2s,G) is intersecting, then so is F(r, n,G).

3 Maximal left-compressed intersecting families

We say an intersecting family A ⊆ [n](r) is maximal if no other set can be
added to A while preserving the intersecting property. The maximal objects in
the set of left-compressed intersecting families are maximal intersecting families
(otherwise an extension could be compressed to a left-compressed extension),
so the ordering of ‘maximal’ and ‘left-compressed’ is unimportant.

The maximal left-compressed intersecting subfamilies of [n](2) are {12, 13, . . . , 1n}
and {12, 13, 23}, and we can already distinguish between these families when
n = 4. In fact, the same phenomenon occurs for all r.

Lemma 8. Let A ⊆ [2r](r) be a maximal left-compressed intersecting family
and n ≥ 2r. Then A extends uniquely to a maximal left-compressed intersect-
ing subfamily of [n](r). Moreover, every maximal left-compressed intersecting
subfamily of [n](r) arises in this way.

Proof. Since A is left-compressed, it can be completely described by listing its
≤-maximal elements A1, . . . , Ak. Some of these sets might contain final segments
of [2r]. The idea is that the elements of these final segments would take larger
values if they were allowed to, so we obtain a generating set by ‘replacing them
by ∞’.

For A = Ai, take s greatest with as < r + s (s exists since [r + 1, 2r] is not
a member of any left-compressed intersecting family), and let A′ = a1 . . . as.
Then G = {A′

1, . . . , A
′
k} generates A, as the sets generated by A′

i are precisely
those lying below Ai. Since G is a collection of subsets of [2r] of size at most
r and A = F(r, 2r,G) is intersecting, Corollary 7 tells us that F(r, n,G) is a
left-compressed intersecting family for every n.

Now let B be any extension of A to a left-compressed intersecting subfamily
of [n](r). We will show that B ⊆ F(r, n,G). Indeed, if B 6⊆ F(r, n,G) then there
is a B ∈ B \ F(r, n,G). We claim that there is a B′ ∈ [2r](r) with B′ ≤ B and
B′ 6∈ F(r, 2r,G), contradicting the maximality of A.

We obtain B′ from B by compressing as little as possible to get B′ ⊆ [2r];
that is, we take B′ = (B ∩ [2r]) ∪ [q, 2r] with q chosen such that |B′| = r.
Explicitly, b′i = min(bi, r + i). Now take G ∈ G. Since B 6∈ F(r, n,G), there is
an i with bi > gi. By construction, r+ i > gi. So b′i = min(bi, r+ i) > gi, and G
does not generate B′. Hence A extends uniquely to a maximal left-compressed
intersecting subfamily of [n](r).
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It remains to show that every maximal left-compressed intersecting subfam-
ily of [n](r) arises in this way. So suppose C ⊆ [n](r) is a maximal left-compressed
intersecting family with C ∩ [2r](r) not maximal. Let D0 be an extension of
C ∩ [2r](r) to a maximal left-compressed intersecting subfamily of [2r](r), and
let D be the unique maximal extension of D0 to [n](r). Since C is maximal
and D \ C 6= ∅, there is a C ∈ C \ D. As above, we obtain C ′ ∈ [2r](r) with
C ′ ≤ C and C ′ 6∈ D0. But then C ′ 6∈ C, contradicting the assumption that C is
left-compressed.

Lemma 8 allows a compact description of maximal left-compressed intersect-
ing families. For example, {1} generates the star and {1(r + 1), [2, r + 1]} gen-
erates the Hilton-Milner family. Enumerating the generating sets using a com-
puter is feasible for small r; for r = 3 they are {1}, {23}, {345}, {14, 234}, {13, 235, 145}
and {12, 245}.

In view of Lemma 8, our key tool is the following.

Lemma 9. Let n ≥ 2, X ⊆ [2, 2r]. Then

|F(r, n,G)(X)| =
r∑

i=1

|F(i, 2r,G)(X)|
(
n− 2r

r − i

)
.

Proof. How do we construct a member of F(r, n,G)(X)? We first choose an
initial segment for our set that is contained in [2r] and witnesses the membership
of F(r, n,G)(X) (i.e. meets X and is ≺ some G ∈ G). We then complete our
set by taking as many elements as we need from outside [2r]. This gives rise to
the size claimed.

4 Proof of Theorem 4

We first show that X is not good if the given conditions do not hold. We have
already seen that for X ⊆ [2, r + 1] the Hilton-Milner family shows that X is
not good for any n. In each of the remaining cases we claim that the family
generated by {23} shows that X is not good for any n.

So take X = 23k with k ≥ r + 2. We have

|F(r, n, {1})(23k)| =
(
n− 2

r − 2

)
+

(
n− 3

r − 2

)
+

(
n− 4

r − 2

)
,

where the first term counts the sets containing 1 and 2, the second term the
sets containing 1 and 3 but not 2, and the third term the sets containing 1 and
k but neither 2 nor 3. Similarly,

|F(r, n, {23})(23k)| =
(
n− 2

r − 2

)
+

(
n− 3

r − 2

)
+

(
n− 3

r − 2

)
,

where the terms count the sets containing 1 and 2, the sets containing 1 and 3
but not 2, and the sets containing 2 and 3 but not 1 respectively. Since r ≥ 3,
|F(r, n, {23})(23k)| > |F(r, n, {1})(23k)| and 23k is not good.

Next take X = 3j with j ≥ r + 2. We have

|F(r, n, {1})(3j)| =
(
n− 2

r − 2

)
+

(
n− 3

r − 2

)
,
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where the terms count the sets containing 1 and 3, and the sets containing 1
and j but not 3 respectively. Similarly,

|F(r, n, {23})(3j)| =
(
n− 2

r − 2

)
+

(
n− 3

r − 2

)
+

(
n− 4

r − 3

)
,

where the terms count the sets containing 1 and 3, the sets containing 2 and 3
but not 1, and the sets containing 1, 2 and j but not 3 respectively. Again, since
r ≥ 3, |F(r, n, {23})(3j)| > |F(r, n, {1})(3j)| and 3j is not good. It follows from
Theorem 3(b) that 2j is not good either.

Now we take X satisfying the conditions of the theorem and show that
X is good for n sufficiently large. We will show that, for any G 6= {1},
|F(2, 2r,G)(X)| < |F(2, 2r, {1})(X)| = |X|. Note that, for any G, |F(1, 2r,G)(X)| =
0 as the only possible singleton generator is 1, which does not meet X. So
by Lemma 9, F(r, n,G)(X) has size polynomial in n with leading coefficient
|F(2, 2r,G)(X)|, from which the result will follow.

There are two maximal left-compressed intersecting families of 2-sets, and
F(2, 2r,G)(X) must be contained in one of them. We handle each case sepa-
rately.

Suppose first that F(2, 2r,G)(X) ⊆ {12, 13, 23}. Then it is enough to show
that

|{12, 13, 23}(X)| < |X|.

This is clearly true for |X| ≥ 4. If |X| = 3, then it is true because one of 2 or
3 is missing from X so that |{12, 13, 23}(X)| ≤ 2. If |X| = 2, then it is true
because both 2 and 3 are missing from X, so that |{12, 13, 23}(X)| = 0. Finally,
if |X| = 1, then it is true because X = {i} with i ≥ r + 2 ≥ 4.

Next suppose that F(2, 2r,G)(X) ⊆ {12, 13, . . . , 1(2r)}. Since F(r, 2r,G) is
left-compressed and has a member not containing the element 1, it has [2, r+1] as
a member. Hence by the intersecting property of the generators, F(2, 2r,G)(X)
cannot contain 1j for any j ≥ r + 2. But X 6⊆ [2, r + 1], so there is such a
j ∈ X \ [2, r + 1] and |F(2, 2r,G)(X)| < |X|.

5 Improvements and generalisations

What happens for small n? Theorem 3(c) tells us that our characterisation
cannot be correct for all n ≥ 2r.

Question 10. How large is ‘sufficiently large’ for n in Theorem 4?

For 2 ≤ r ≤ 5, computational results suggest that n ≥ 2r+2 is large enough
for our characterisation to be correct. It would be particularly nice to show that
n ≥ 2r + c is sufficient for some constant c independent of r.

A natural conjecture is that for n = 2r, [2k, 2k + 2, . . . , 2r] is the unique
minimal good set of its size. However, this is false; computational results give
that {7, 10} and {5, 8, 10} are unique minimal good sets of their size when r = 5.

Question 11. Is there a ‘nice’ characterisation of the good sets for n = 2r
when r is sufficiently large?

It seems unlikely that a good explicit description exists for intermediate
values of r and n. The following may be easier.
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Question 12. Is there a short list of families, one of which maximises |A(X)|
for any X?

Versions of Lemma 8 hold for any property that is preserved under left-
compression and can be detected on generating sets. The most obvious candi-
date is that of being t-intersecting (a family A is t-intersecting if |A ∩ B| ≥ t
for all A,B ∈ A). Indeed, an identical argument gives the corresponding result
that, for large n, a set X ⊆ [t + 1, n] with |X| ≥ t + 3 is good if and only if
X 6⊆ [t + 1, r + 1]. (For smaller X the form of good X is again decided by the
need to prevent problems caused when F(t+ 1, 2r− t+ 1,G)(X) ⊆ [t+ 2](t+1).)

In the context of t-intersecting families it may be more natural to consider

A(s,X) = {A ∈ A : |A ∩X| ≥ s}.

For s = 1 the argument relies on the fact that maximal left-compressed t-
intersecting families of (t + 1)-sets have one of two very simple forms. For
s = 2, even the t = 1 case is complicated by the larger number of structures of
intersecting families of 3-sets (more generally, (t + s)-sets); this problem seems
likely to get worse for larger s and t.
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