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Assume all random variables have well-defined means, variances etc. when mentioned.
Results may not be stated in greatest possible generality.

1 Basic inequalties

Theorem 1 (Markov). Let X ≥ 0. For t > 0, P(X ≥ t) ≤ E(X)
t

.

Proof. Observe that t1X≥t ≤ X, then take expectations of each side.

Theorem 2 (Chebyshev). P(|X − E(X)| ≥ t) ≤ Var(X)
t2

.

Proof. Apply Markov to (X − E(X))2.

‘The second moment method’ = ‘we computed a variance and applied Chebyshev’.
Computing variances can be difficult. Quadratic error probability can be problematic if
you want many events to hold simultaneously.

Could look at higher moments (e.g. E(X)/t4 on rhs) if so inclined.

2 Exponential concentration

Theorem 3 (Chernoff). Let X =
∑n

i=1Xi with Xi = ±1 independently with probablity
1/2. Then

P(X ≥ t) ≤ e−t
2/2n.

Proof. Apply Markov to ehX for some h > 0.

P(X ≥ t) = P(ehX ≥ eht)

≤ E(ehX)

eht
=

E(
∏n

i=1 e
hXi)

eht
=

∏n
i=1 E(ehXi)

eht
,

since the Xi are independent. Now

E(ehXi) =
eh + e−h

2
= coshh ≤ eh

2/2,

by comparing Taylor series, so

P(X ≥ t) ≤ e
nh2

2
−ht = e

nh
2

(h− 2t
n

) = e−t
2/2n

for h = t/n.
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Theorem 4 (Hoeffding). Let X =
∑n

i=1Xi be a sum of independent random variables
with Xi ∈ [−ai, bi] and E(Xi) = 0. Then

P(X ≥ t) ≤ e−2t2/
∑n
i=1(ai+bi)

2

.

The means being 0 is just a techinical condition to make the proof easier to write.
It can always be ensured by subtracting off the means of the random variables that you
started with; you then get a bound on the probability of X exceeding its mean that
depends on the lengths ci = ai + bi of the intervals that the Xi take values in.

Proof. As before, for h > 0,

P(X ≥ t) = P(ehX ≥ eht)

≤ E(ehX)

eht
=

E(
∏n

i=1 e
hXi)

eht
=

∏n
i=1 E(ehXi)

eht
,

since the Xi are independent. For every x ∈ [−a, b] we have x = b−x
a+b

(−a) + a+x
a+b

b, so by
convexity

ehx ≤ b− x
a+ b

e−ha +
a+ x

a+ b
ehb.

Hence

E(ehXi) ≤ E
(
bi −Xi

ai + bi
e−hai +

ai +Xi

ai + bi
ehbi
)

=
bie
−hai + aie

hbi

ai + bi
= e−hai

bi + aie
h(ai+bi)

ai + bi
.

Let
f(h) = log(E(ehXi)) = −hai + log(bi + aie

h(ai+bi))− log(ai + bi).

Then

f ′(h) = −ai +
aie

h(ai+bi)

bi + aieh(ai+bi)
(ai + bi)

and

f ′′(h) =
aibie

h(ai+bi)

(bi + aieh(ai+bi))2
(ai + bi)

2.

Now f(0) = f ′(0) = 0 and f ′′(h) ≤ (ai + bi)
2/4 by the arithmetic mean-geometric mean

inequality, so, by Taylor’s theorem, f(h) ≤ h2(ai + bi)
2/8 and

E(ehXi) ≤ eh
2(ai+bi)

2/8.

Thus

P(X ≥ t) ≤ e
h2

8

∑n
i=1(ai+bi)

2−ht = e
h
8

∑n
i=1(ai+bi)

2(h− 8t∑n
i=1

(ai+bi)
2 )

= e−2t2/
∑n
i=1(ai+bi)

2

,

for h = 4t∑n
i=1(ai+bi)2

.
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3 Martingale concentration

A σ-algebra is an object that tells you what events are detectable/measurable/have prob-
abilities. There’s some general definition, but over finite probability spaces they’re very
easy to describe. You have a partition of the probability space into smallest measurable
events, and then every set you can make by taking a union of these atoms is also a
measurable event. So finite σ-algebras essentially look like power sets, except that the
smallest events might not be singletons. For example, suppose that the underlying prob-
ability space is Ω = {0, 1}n, modelling n flips of a coin. The following are all examples
of σ-algebras.

• The power set F = P(Ω), which lets you ask about any conceivable property of the
sequence of coin flips.

• The σ-algebra G whose atomic events are the sets Ai for 0 ≤ i ≤ n, where Ai is the
set of sequences of flips with exactly n heads. G knows about the number of heads,
but not the result of any particular coin flip.

• The σ-algebra Fk whose atomic events have the form {x1}× · · ·×{xk}×{0, 1}n−k.
Fk knows about the first k flips, but nothing about what happens later.

The σ-algebra A refines the σ-algebra B if its atomic events are obtained by splitting the
atoms of B into smaller pieces. That is, we look inside the atoms to distinguish outcomes
that we couldn’t distinguish before. The finest possible σ-algebra is P(Ω); the coarsest is
{∅,Ω}. A filtration is a sequence (Ai) of σ-algebras such that Ai+1 is a refinement of Ai
for each i. Thus (Fk)nk=0 is a filtration where at each stage we learn about the outcome
of the next coin flip.

An A-measurable random variable is a function which is constant on the atoms of A.
For example, a random variable is Fk-measurable if it only depends on the outcome of
the first k flips. For an Fn-measurable random variable Y , the conditional expectation
of Y with respect to Fk is the Fk-measurable random variable E(Y |Fk) whose value on
the atom A is E(Y 1A)/P(A); informally, the average value of Y conditioned on A having
occurred.1

The sequence of random variables Yk = E(Y |Fk) is a martingale with respect to the
filtration (Fk)nk=0. The key property of a martingale is that

E(Yk+1|Fk) = E(E(Y |Fk+1)|Fk) = E(Y |Fk) = Yk,

where the middle inequality is the grandly named Law of Total Expectation: the average
of the average values of Y over the atoms of Fk+1 contained in a given atom of Fk is the
just average value of Y over that atom.

For a martingale (Yk)
n
k=0, its difference sequence is defined by X0 = E(Yn) and Xi =

Yi − Yi−1. Note that E(Xi|Fi−1) = 0.

Theorem 5 (Hoeffding–Azuma). Let (Yk)
n
k=0 be a martingale with difference sequence

(Xk)
n
k=0. Suppose that on each atom of Fi−1, Xi takes values only in some interval of

length at most ci. Then

P(Yn ≥ E(Yn) + t) ≤ e−2t2/
∑n
i=1 c

2
i .

1What we’ve actually done is define this notion. Note that if P(A) = 0 we get nonsense but don’t
care, as it doesn’t matter if random variables are only defined with probability 1 rather than everywhere.
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Proof. Let X = X1 + · · ·+Xn = Yn − E(Yn). Following the same strategy as before, we
have

P(Yn ≥ E(Yn) + t) = P(X ≥ t)

= P(ehX ≥ eht)

≤ E(ehX)

eht
=

E(
∏n

i=1 e
hXi)

eht
.

Now

E

(
n∏
i=1

ehXi

)
= E

(
E

(
n∏
i=1

ehXi |Fn−1

))
= E

(
n−1∏
i=1

ehXiE
(
ehXn|Fn−1

))
,

because X1, . . . , Xn−1 are each constant on atoms of Fn−1.
On each atom of Fn−1, E(ehXn|Fn−1) is an expression of the type we were previously

able to bound by eh
2c2i /8, so by induction we have

E

(
n∏
i=1

ehXi

)
≤ eh

2
∑n
i=1 c

2
i /8,

and we can complete the proof as before.

Corollary 6. Let Ω = Ω1 × · · · ×Ωn be a product space, and let Y be a random variable
on Ω such that

|Y (ω)− Y (ω′)| ≤ ci

whenever ω and ω′ differ only on the ith coordinate. Then

P(Yn ≥ E(Yn) + t) ≤ e−2t2/
∑n
i=1 c

2
i .

Proof. Let (Yk)
n
k=0 be the martingale corresponding to the filtration (Fk)nk=0 which looks

at coordinates of the random sample ω one at a time. We claim that Theorem 5 applies.
To see this, observe that

Yi(ω) =
∑

ηi+1∈Ωi+1

· · ·
∑
ηn∈Ωn

Y (ω1, . . . , ωi, ηi+1, ηi+2 . . . , ηn)Pi+1(ηi+1) · · ·Pn(ηn),

where Pj(ηj) is the probability that a random sample from Ωj is ηj. Similarly,

Yi+1(ω) =
∑

ηi+2∈Ωi+1

· · ·
∑
ηn∈Ωn

Y (ω1, . . . , ωi, ωi+1, ηi+2 . . . , ηn)Pi+2(ηi+2) · · ·Pn(ηn)

=
∑

ηi+1∈Ωi+1

· · ·
∑
ηn∈Ωn

Y (ω1, . . . , ωi, ωi+1, ηi+2 . . . , ηn)Pi+1(ηi+1) · · ·Pn(ηn).

Hence on the atom of Fi picked out by ω1, . . . , ωi,

|Yi(ω)− Yi+1(ω)| ≤
∑

ηi+1∈Ωi+1

· · ·
∑
ηn∈Ωn

Pi+2(ηi+1) · · ·Pn(ηn)
∣∣Y (ω1, . . . , ωi, ηi+1, ηi+2 . . . , ηn)

− Y (ω1, . . . , ωi, ωi+1, ηi+2 . . . , ηn)
∣∣

≤
∑

ηi+1∈Ωi+1

· · ·
∑
ηn∈Ωn

Pi+2(ηi+1) · · ·Pn(ηn)ci

= ci.
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A similar argument can be made for functions of random permutations, rather than
product spaces.

4 What can go wrong

Martingale concentration is a very powerful and flexible tool, but it does have some
downsides.

(i) Concentration will typically only be in an interval of length
√
n, even if the expec-

tation of the random variable is much lower than that.

(ii) It looks at worst case changes.

Problem (i) can be addressed by McDiarmid’s inequality.

Theorem 7 (McDiarmid). Let X =
∑n

i=1Xi be a sum of independent random variables
with Xi ≤ c. Then

P(X ≥ E(X) + t) ≤ e
− t2

2Var(X)(1+ ct
3Var(X)) .

The proof has the same basic shape as that of Hoeffding’s inequality. The variance
term arises from taking a Taylor expansion of ex to second order.

In typical applications t is of the order
√

Var(X) and Var(X) is tending to infinity.
In this case the error probability looks like that for the Gaussian of the same variance, so
cannot be improved. For large t the error probability is ‘only’ exponentially small, which
is again the correct behaviour as can be seen by looking at binomial random variables.

There is a standard trick for addressing problem (ii), exemplified by Freedman’s in-
equality.

Theorem 8 (Freedman). Let (Yk)
n
k=0 be a martingale with difference sequence (Xk)

n
k=0

bounded above by c. Let W =
∑n

k=1 E(X2
k |Fk−1).

Then

P(Y ≥ E(Y ) + t and W ≤ σ2) ≤ e
− t2

2σ2(1+ ct
3σ2

) .

If the predictable quadratic variation W is unconditionally bounded, then Freedman’s
inequality is to McDiarmid’s inequality as Hoeffding–Azuma is to Hoeffding. If there are
possible but unlikely runs of the experiment where W is large, then we can introduce
a new martingale (Zk)

n
k=0 which, for each ω, agrees with (Yk)

n
k=0 ‘until W is about to

become too large’, after which point j = j(ω) we take Zj(ω) = Zj+1(ω) = · · · = Zn(ω).
This is still a martingale and makes W ≤ σ2 by fiat at the cost of weakening applications
to

P(Y ≥ E(Y ) + t) ≤ P(Z ≥ E(Z) + t or Y 6= Z)

= P(Z ≥ E(Z) + t and Y = Z) + P(Y 6= Z)

= P(Y ≥ E(Y ) + t and W ≤ σ2) + P(W ≥ σ2)

≤ e
− t2

2σ2(1+ ct
3σ2

) + P(W ≥ σ2).
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5 Talagrand

An alternative approach to problem (i) is offered by Talagrand’s inequality, of which the
following is a very special case.

Theorem 9 (Talagrand). Let Ω = Ω1 × · · · × Ωn be a product space, and let Y be a
random variable on Ω such that

• |Y (ω)− Y (ω′)| ≤ c whenever ω and ω′ differ only on the ith coordinate (that is, Y
does not depend too much on any one coordinate);

• if Y (ω) ≥ s then there is a set J of s coordinates such that Y (ω′) ≥ s whenever
ωj = ω′j for j ∈ J (that is, if Y is large then we can explain that fact cheaply).

Then, for every x, P(Y ≤ x− t)P(Y ≥ x) ≤ e−t
2/xc2.

This inequality is almost always applied with x = m or x = m+t where m is a median
of Y . Then one of the probabilities on the left-hand side is 1/2, so

P(Y ≤ m− t) ≤ 2e−t
2/mc2 ,

P(Y ≥ m+ t) ≤ 2e−t
2/(m+t)c2 .

The asymmetry here can be inconvenient, as can concentration near the median rather
than the mean. However, it is frequently possible to use the concentration guaranteed
by Talagrand and some crude bounds on Y to show that its mean and median cannot be
too far apart.
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