Random Structures and Algorithms 2017

A partial, chronologically ordered, list of talks I attended at RSA in Gniezno, Poland. Under construction until the set of things I can remember equals the set of things I’ve written about. Shagnik Das A family of subsets of that shatters a -set has at least elements. How many -sets can we shatter with a …

Matchings without Hall’s theorem

In practice matchings are found not by following the proof of Hall’s theorem but by starting with some matching and improving it by finding augmenting paths.  Given a matching in a bipartite graph on vertex classes and , an augmenting path is a path from to such that ever other edge of is an edge of …

Matchings and minimum degree

A Tale of Two Halls (Philip) Hall’s theorem.  Let be a bipartite graph on vertex classes , .  Suppose that,  for every , .  Then there is a matching from to . This is traditionally called Hall’s marriage theorem.  The picture is that the people in are all prepared to marry some subset of the …

Block partitions of sequences

Let be a line segment of length broken into pieces of length at most . It’s easy to break into blocks (using the preexisting breakpoints) that differ in length by at most (break at the nearest available point to , etc.). In the case where each piece has length and the number of pieces isn’t divisible …

The Namer-Claimer game

Consider the following game played on the integers from to .  In each round Namer names a forbidden distance , then Claimer claims a subset of that does not contain any two integers at distance .  After finitely many rounds, Claimer will have claimed sets that cover the whole of , at which point the …

Partition regularity and other combinatorial problems

This is the imaginative title of my PhD thesis.  It contains four unrelated pieces of work.  (I was warned off using this phrasing in the thesis itself, where the chapters are instead described as “self-contained”.) The first and most substantial concerns partition regularity.  It is a coherent presentation of all of the material from Partition …

Nowhere zero 6-flows

A flow on a graph is an assignment to each edge of of a direction and a non-negative integer (the flow in that edge) such that the flows into and out of each vertex agree.  A flow is nowhere zero if every edge is carrying a positive flow and (confusingly) it is a -flow if the flows …

Edge-decompositions of graphs with high minimum degree

Ben Barber, Daniela Kühn, Allan Lo and Deryk Osthus, Advances in Mathematics, Volume 288, 22 January 2016, Pages 337–385 PDF When can the edge set of a graph be partitioned into triangles? Two obvious necessary conditions are that the total number of edges is divisible by 3 and the degree of every vertex is even. We …